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Abstract 

Chimeric antigen receptor T (CAR-T) cell therapy has greatly improved the prognosis of relapsed and refractory patients 
with large B-cell lymphoma (LBCL). Early identification and intervention of patients who may respond poorly to CAR-T 
cell therapy will help to improve the efficacy. Ninety patients from a Chinese cohort who received CAR-T cell therapy 
and underwent 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) 
scans at the screening stage (median time to infusion 53.5 days, range 27–176 days), 1 month and 3 months after CAR-T 
cell infusion were analyzed, with RNA-sequencing conducted on 47 patients at the screening stage. Patients with maxi‑
mum diameter of the largest lesion (Dmax) < 6 cm (N = 60) at screening stage showed significantly higher 3-month com‑
plete response rate (85.0% vs. 33.3%, P < 0.001), progression-free survival (HR 0.17; 95% CI 0.08–0.35, P < 0.001) and overall 
survival (HR 0.18; 95% CI 0.08–0.40, P < 0.001) than those with Dmax ≥ 6 cm (N = 30). Besides, at the screening stage, Dmax 
combined with extranodal involvement was more efficient in distinguishing patient outcomes. The best cut-off values 
for total metabolic tumor volume (tMTV) and total lesion glycolysis (tTLG) at the screening stage were 50cm3 and 500 g, 
respectively. A prediction model combining maximum standardized uptake value (SUVmax) at 1 month after CAR-T cell 
therapy (M1) and tTLG clearance rate was established to predict early progression for partial response/stable disease 
patients evaluated at M1 after CAR-T cell therapy and validated in Lyon cohort. Relevant association of the distance 
separating the two farthest lesions, standardized by body surface area to the severity of neurotoxicity (AUC = 0.74; 
P = 0.034; 95% CI, 0.578–0.899) after CAR-T cell therapy was found in patients received axicabtagene ciloleucel. In patients 
with Dmax ≥ 6 cm, RNA-sequencing analysis conducted at the screening stage showed enrichment of immunosuppres‑
sive-related biological processes, as well as increased M2 macrophages, cancer-associated fibroblasts, myeloid-derived 
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suppressor cells, and intermediate exhausted T cells. Collectively, immunosuppressive tumor microenvironment may 
serve as a negative prognostic indicator in patients with high tumor burden who respond poorly to CAR-T cell therapy.

Keywords  Large B-cell lymphoma, CAR-T cell therapy, 18F-FDG PET/CT, Microenvironment

To the editor
Chimeric Antigen Receptor T (CAR-T) cell therapy has 
greatly improved the prognosis of relapsed and refrac-
tory patients with large B-cell lymphoma (LBCL), 
with objective remission rate (ORR) as 83%, complete 
response (CR) as 58%, and 5-year overall survival (OS) 
as 42% [1]. Despite its efficacy, a subset of patients still 
experiences disease progression. Recently, it has been 
demonstrated that pre-apheresis and pre-infusion total 
metabolic tumor volume (tMTV) could predict survival 
and that higher pre-apheresis or pre-infusion tMTV val-
ues were associated with shorter progression-free sur-
vival (PFS) and OS. Furthermore, at pre-infusion, tMTV 
was associated with grade ≥ 2 cytokine release syndrome 
(CRS), and maximum standardized uptake value (SUV-
max) was associated with failure to achieve CR. A pre-
dictive model using pre-infusion tMTV combined with 
lactate dehydrogenase (LDH) was established to predict 
patient outcomes after CAR-T cell therapy [2].

Here we reviewed 90 Chinese LBCL patients (53 
males, 37 females; median age 56.5 years) received 
CAR-T cell therapy at our institution from January 
1, 2018 to March 31, 2023 (baseline characteristics 
showed in Table  1). Key radiomic metrics included 
SUVmax, tMTV, total lesion glycolysis (tTLG), maxi-
mum diameter of the largest lesion (Dmax), and dis-
tance separating the two farthest lesions, standardized 
by body surface area (hereafter referred to as distance 
of the farthest lesions), at screening or 1-month after 
CAR-T cell infusion. By analyzing these radiomics met-
rics in conjunction with the M3 response and survival 
of patients, patients at screening with Dmax < 6cm 
(N = 60) had higher 3-month CR rates (85.0% vs. 33.3%, 
P < 0.001), PFS (HR 0.17; 95% CI 0.08–0.35, P < 0.001), 
and OS (HR 0.18; 95% CI 0.08–0.40, P < 0.001). Simi-
larly, patients with tMTV < 50cm3 and tTLG < 500g had 
higher 3-month CR rates, PFS and OS (Fig.  1). Based 
on the areas under curve (AUC) of the receiver oper-
ating characteristic (ROC) curves for each metric and 
multivariate analysis, Dmax had the largest AUC and 
the most significant P-value, therefore, it was the opti-
mal screening metric for predicting prognosis (Sup-
plementary Fig. 1A-C and Table 2). Next, we validated 
previously reported predictor model [2] using our 
cohort and found that Dmax combined with extranodal 

Table 1  Baseline characteristics of RJ cohort and Lyon cohort

RJ cohort 
(n = 90)

Lyon cohort 
(N = 72)

Age  > 60 31 (34.4%) 33 (45.8%)

 ≤ 60 59 (65.6%) 39 (54.2%)

Gender Male 53 (58.9%) 44 (61.1%)

Female 37 (41.1%) 28 (38.9%)

ECOG score 0–1 63 (70.0%) 53 (73.6%)

 ≥ 2 27 (30.0%) 19 (26.4%)

Ann Arbor stage I-II 21 (23.3%) 18 (25.0%)

III-IV 69 (76.7%) 54 (75.0%)

LDH level Normal 19 (21.1%) 16 (22.2%)

Elevated 71 (78.9%) 56 (77.8%)

Extranodal sites 0–1 36 (40.0%) NA

 ≥ 2 54 (60.0%) NA

IPI score 0–2 33 (36.7%) NA

3–5 57 (63.3%) NA

Disease type DLBCL 72 (80.0%) 45 (62.5%)

PBMCL 4 (4.4%) 5 (6.9%)

PCNSL 1 (1.1%) 0

Transformed 
low-grade 
lymphoma

13 (14.4%) 22 (30.6%)

Cell of origin GCB 35 (38.9%) 36/63 (57.1%)

Non-GCB 55 (61.1%) 27/63 (42.9%)

Prior lines of therapy 1–2 56 (62.2%) 17 (23.6%)

 ≥ 3 34 (37.8%) 55 (76.4%)

Primary refractory No 26 (28.9%) 25 (34.7%)

Yes 64 (71.1%) 47 (65.3%)

Response to last line PR 19 (21.1%) NA

SD/PD 71 (78.9%) NA

Prior ASCT No 83 (92.2%) 52 (72.2%)

Yes 7 (7.8%) 20 (27.8%)

Bulky disease ≥ 6cm No 60 (66.7%) 37/59 (62.7%)

Yes 30 (33.3%) 22/59 (37.3%)

Double expressor No 52 (57.8%) 20/64 (31.2%)

Yes 38 (42.2%) 44/64 (68.8%)

Double/triple-hit No 79 (87.8%) 26/31 (83.9%)

Yes 11 (12.2%) 5/31 (16.1%)

TP53 mutation No 59 (65.6%) NA

Yes 31 (34.4%) NA

CAR-T products Axi-cel 61 (67.8%) 33 (45.8%)

Relma-cel 29 (32.2%) 0

Kymriah 0 39 (54.2%)
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involvement was more efficient in distinguishing 
patient outcome than the combination of tMTV or 
tTLG with extranodal involvement or LDH (Fig.  1B-D 
and Table 2).

Identifying patients who will experience early progres-
sion is critical to implementing preemptive treatment 
strategies. Therefore, we developed a prediction model 
for early progression using these radiomic data for partial 
response (PR)/ stable disease (SD) patients 1 month after 

CAR-T cell therapy. Recently, growing evidence has dem-
onstrated that high SUVmax in M1 is strongly associated 
with poor prognosis [3–5]. Of note, the tTLG index is 
derived in conjunction with lesion volume and spatial dis-
tribution to measure the metabolic activity of the lesion 
and treatment response. We found that the prediction 
model combining the SUVmax and the tTLG clearance 
rate (ΔtTLG / tTLGpre = [tTLG at screening stage]-[tTLG 
at M1]) / tTLG at screening stage) of M1 was able to 

Fig. 1  The value of screening-phase 18F-FDG PET/CT metrics in predicting response, prognosis, and death. A Examination time points 
during CAR-T cell therapy process. B-D PFS and OS of patients stratified with whether extranodal involvement and screening-phase Dmax (B), tMTV 
(C), and tTLG (D). E 3-, 6- and 12-month responses after CAR-T cell therapy stratified with screening-phase 18F-FDG PET/CT metrics. 18F-FDG PET/
CT, 18F-fluorodeoxyglucose positron emission tomography/computed tomography; CAR-T, chimeric antigen receptor T; PFS, progression-free 
survival; OS, overall survival; Dmax, the maximum diameters of the largest lesion; tMTV, total metabolic tumor volume; tTLG, total lesion glycolysis
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accurately predict the patients without progression 
after CAR-T cell therapy. M1 SUVmax < 8 and ΔtTLG / 
tTLGpre ≥ 0.9 (N = 11, median PFS not reached) predicted 
a constant state of remission. However, SUVmax ≥ 8 
indicted progression within 6 months, regardless of tTLG 
clearance rate (tTLG clearance rate ≥ 0.9, N = 6, median 
PFS 4.2  months, HR 95.0, 95%CI 13.6–665.6  months; 
tTLG clearance rate < 0.9, N = 7, median PFS 3.7 months, 
HR 65.2, 95%CI 11.3–376.0  months), while M1 SUV-
max < 8 and tTLG clearance rate < 0.9 (N = 5, median PFS 
4.4 months, HR 69.6, 95%CI 8.8–551.2 months) indicated 
progression in 12  months (Supplementary Fig.  2A, 2E). 
Furthermore, this model was validated by Lyon cohort 
(Supplementary Fig. 2B) [4], indicating that the model is 
robust and reliable, as the genetic background and eth-
nicity of patients do not affect the predictive power of the 
model.

As for the predictive value of adverse events during 
CAR-T cell therapy, a correlation between baseline MTV 
with CRS/neurotoxicity (NT) grades [6–8], and baseline 
SUVmax with CRS [3] has been revealed. In our cohort, 
for axicabtagene ciloleucel (axi-cel), distance of the far-
thest lesions was associated with NT (AUC = 0.74) (Sup-
plementary Fig.  3). No NT occurred in patients with 
distance of the farthest lesions < 0.15m−1, while 34.8% of 
patients with distance of the farthest lesion ≥ 0.15m−1 

experienced NT. However, for relmacabtagene autoleucel 
(relma-cel), no strong correlations were observed. Imag-
ing metrics did not correlate significantly with CRS/NT 
duration or onset, or with CAR-T cell expansion metrics 
(Supplementary Fig. 4). Therefore, incidence of CRS and 
NT could vary from different CAR-T cells, probably due 
to differences in CAR-T cell co-stimulatory molecules 
and could also be due to the small sample size.

Gene Set Enrichment Analysis (GSEA) of RNA-
sequencing data showed that immunosuppressive-related 
biological processes were enriched in patients with 
Dmax ≥ 6cm (Fig.  2). Tumor microenvironment (TME) 
analysis revealed higher levels of M2 macrophages, 
cancer-associated fibroblasts (CAF), myeloid-derived 
suppressor cell (MDSC), and intermediate exhausted T 
cells in these patients, suggesting an immunosuppres-
sive microenvironment and a possible reason for CAR-T 
cell therapy failure in patients with high tumor burden. 
Accompanied by the increasing immunosuppressive cells 
within TME, the lipid metabolic, iron/copper ion trans-
port, macrophage, granulocyte, monocyte chemotaxis, 
and autophagy pathways were significantly activated 
(Dmax ≥ 6cm). Under high tumor burden, tumor cells 
tend to recruit and activate more immunosuppressive 
cells, through metabolism alterations and subsequent 
induction of T-cell exhaustions [9, 10].

Table 2  Univariate and multivariate logistic regression of the predictive factors for progression-free survival

Abbreviations: ECOG Eastern Cooperative Oncology Group, LDH lactate dehydrogenase, IPI international prognostic index, DLBCL diffuse large B-cell lymphoma, 
PMBCL primary mediastinal B-cell lymphoma, PCNSL primary central nervous system lymphoma, GCB germinal center B cell, PR partial response, SD stable disease, 
PD progressive disease, ASCT autologous stem-cell transplantation, CAR-T chimeric antigen receptor T, Axi-cel axicabtagene ciloleucel, Relma-cel relmacabtagene 
autoleucel, PFS progression-free survival, OR odds ratio, CI confidential interval
* P < 0.1
** P < 0.05

Characteristics Univariate analysis Multivariate analysis

OR (95%CI) P value OR (95%CI) P value

Age > 60 1.053 (0.436–2.546) 0.908 0.535 (0.115–2.496) 0.426

Male 1.041 (0.443–2.445) 0.927 0.485 (0.116–2.031) 0.322

ECOG ≥ 2 1.509 (0.607–3.749) 0.376 0.918 (0.197–4.283) 0.913

Ann Arbor stage ≥ 3 1.538 (0.552–4.286) 0.410 0.931 (0.185–4.681) 0.931

LDH elevated 0.949 (0.340–2.650) 0.921 0.351 (0.076–1.627) 0.181

Extranodal involvement 1.679 (0.573–4.920) 0.345 4.376 (0.805–23.792) 0.087*

GCB subtype 0.511 (0.210–1.243) 0.511 0.376 (0.094–1.506) 0.167

Prior lines of therapy ≥ 3 1.220 (0.514–2.894) 0.652 1.543 (0.370–6.438) 0.551

Primary refractory 1.168 (0.459–2.968) 0.745 1.104 (0.265–4.596) 0.892

Response to last line: SD/PD 2.297 (0.747–7.063) 0.147 2.473 (0.531–11.527) 0.249

Prior ASCT 1.081 (0.227–5.141) 0.922 0.726 (0.070–7.558) 0.789

Double expressor 1.074 (0.459–2.510) 0.870 1.545 (0.410–5.830) 0.521

Product: Axi-cel 0.648 (0.265–1.585) 0.342 0.556 (0.130–2.384) 0.429

Dmax ≥ 6cm 20.000 (6.334–63.163) 0.000** 25.178 (4.958–127.861) 0.000**

tMTV ≥ 50cm3 6.308 (2.483–16.025) 0.000** 2.085 (0.247–17.630) 0.500

tTLG ≥ 500g 4.020 (1.615–10.007) 0.003** 1.265 (0.145–11.0.28) 0.832
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In summary, imaging metrics of 18F-FDG PET/CT, 
especially Dmax at the screening stage had the predictive 
value of clinical efficacy, progression, and death of CAR-T 
cell therapy, while the distance of the farthest lesions was 
associated with the occurrence of NT. Furthermore, we 
developed a prediction model combining M1 SUVmax 
and tTLG clearance rate to predict early progression 
for patients evaluated as PR/SD at M1 after CAR-T cell 
therapy. Immunosuppressive TME may serve as a possi-
ble mechanism for those patients who respond poorly to 
CAR-T cell therapy with high tumor burden.

Abbreviations
CAR-T	� Chimeric antigen receptor T
LBCL	� Large B-cell lymphoma
18F-FDG PET/CT	� 18F-fluorodeoxyglucose positron emission tomography/

computed tomography
tMTV	� Total metabolic tumor volume
tTLG	� Total lesion glycolysis
SUVmax	� Maximum standardized uptake value
ORR	� Objective remission rate
CR	� Complete response
OS	� Overall survival
PFS	� Progression-free survival
CRS	� Cytokine release syndrome
LDH	� Lactate dehydrogenase

Fig. 2  Biological process and tumor microenvironment characteristics in patients stratified with Dmax. A Enriched BP terms in patients 
with Dmax ≥ 6 cm, as compared to patients with Dmax < 6 cm in CAR-T screening phase. The size of points indicates the number of genes included 
in each gene set. B Volcano plot image of characterized gene expression from enriched categories in patients with Dmax ≥ 6 cm, as compared 
to patients with Dmax < 6 cm in CAR-T screening phase. The background color in the box represents which categories the gene belongs to. 
The black dashed line corresponds to p = 0.05. C Normalized expression of M2 macrophage, CAF, MDSC, and intermediate Tex of patients 
with Dmax ≥ 6 cm and Dmax < 6 cm in the CAR-T screening phase. BP, biological process; TME, tumor microenvironment; CAF, cancer-associated 
fibroblasts; MDSC, myeloid-derived suppressor cell; Tex, exhausted T cell



Page 6 of 7Sheng et al. Biomarker Research          (2024) 12:104 

PR	� Partial response
SD	� Stable disease
NT	� Neurotoxicity
Axi-cel	� Axicabtagene ciloleucel
AUC​	� Area under curve
Relma-cel	� Relmacabtagene autoleucel
GSEA	� Gene Set Enrichment Analysis
TME	� Tumor microenvironment
CAF	� Cancer-associated fibroblasts
MDSC	� Myeloid-derived suppressor cell
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stable disease.

Supplementary Material 4:  Figure S3. Correlation of screening-phase 18F-
FDG PET/CT metrics with CAR-T toxicity. (A-B) ROC curves of screening-
phase 18F-FDG PET/CT metrics (Dmax, tMTV, tTLG, SUVmax, and sDmax) 
withCRS grade < 2 or CRS grade ≥ 2 (A) and no NT grade or any NT grade 
(B) in patients received axi-cel treatment. ROC curves of screening-phase 
18F-FDG PET/CT metrics (Dmax, tMTV, tTLG, SUVmax and sDmax) with 
CRS grade < 2 or CRS grade ≥ 2 (C) and no NT grade or any NT grade (D) 
in patients received relma-cel treatment. (E) Occurrence of NT in patients 
stratified with screening-phase sDmax. (F) Correlation of screening-phase 
18F-FDG PET/CT metrics with duration of CRS and NT. (G) Correlation of 
screening-phase 18F-FDG PET/CT metrics with onset day of CRS and NT. 
CRS, cytokine release syndrome; NT, neurotoxicity; Axi-cel, axicabtagene 
ciloleucel; relma-cel, relmacabtagene autoleucel.

Supplementary Material 5: Figure S4. Correlation of screening-phase 18F-
FDG PET/CT metrics with CAR-T cell expansion. Correlation of screening-
phase 18F-FDG PET/CT metrics with the duration of CAR-T Cmax (A), Tmax 
(B), and AUC​0-28d (C). Cmax, the peak CAR-T cell expansion value; Tmax, the 
days to peak expansion; AUC​0-28d, expansion area under curve of day 0–28 
after CAR-T cell therapy.
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