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Abstract

Chimeric antigen receptor T (CAR-T) cell therapy has greatly improved the prognosis of relapsed and refractory patients
with large B-cell lymphoma (LBCL). Early identification and intervention of patients who may respond poorly to CAR-T
cell therapy will help to improve the efficacy. Ninety patients from a Chinese cohort who received CAR-T cell therapy
and underwent 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT)
scans at the screening stage (median time to infusion 53.5 days, range 27-176 days), 1 month and 3 months after CAR-T
cell infusion were analyzed, with RNA-sequencing conducted on 47 patients at the screening stage. Patients with maxi-
mum diameter of the largest lesion (Dmax) <6 cm (N=60) at screening stage showed significantly higher 3-month com-
plete response rate (85.0% vs. 33.3%, P<0.001), progression-free survival (HR 0.17; 95% Cl 0.08-0.35, P<0.001) and overall
survival (HR 0.18;95% Cl 0.08-0.40, P<0.001) than those with Dmax>6 cm (N=30). Besides, at the screening stage, Dmax
combined with extranodal involvement was more efficient in distinguishing patient outcomes. The best cut-off values
for total metabolic tumor volume (tMTV) and total lesion glycolysis (tTLG) at the screening stage were 50cm? and 500 g,
respectively. A prediction model combining maximum standardized uptake value (SUVmax) at 1 month after CAR-T cell
therapy (M1) and tTLG clearance rate was established to predict early progression for partial response/stable disease
patients evaluated at M1 after CAR-T cell therapy and validated in Lyon cohort. Relevant association of the distance
separating the two farthest lesions, standardized by body surface area to the severity of neurotoxicity (AUC=0.74;
P=0.034; 95% Cl, 0.578-0.899) after CAR-T cell therapy was found in patients received axicabtagene ciloleucel. In patients
with Dmax>6 cm, RNA-sequencing analysis conducted at the screening stage showed enrichment of immunosuppres-
sive-related biological processes, as well as increased M2 macrophages, cancer-associated fibroblasts, myeloid-derived
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suppressor cells, and intermediate exhausted T cells. Collectively, immunosuppressive tumor microenvironment may
serve as a negative prognostic indicator in patients with high tumor burden who respond poorly to CAR-T cell therapy.

Keywords Large B-cell ymphoma, CAR-T cell therapy, 18F-FDG PET/CT, Microenvironment

To the editor

Chimeric Antigen Receptor T (CAR-T) cell therapy has
greatly improved the prognosis of relapsed and refrac-
tory patients with large B-cell lymphoma (LBCL),
with objective remission rate (ORR) as 83%, complete
response (CR) as 58%, and 5-year overall survival (OS)
as 42% [1]. Despite its efficacy, a subset of patients still
experiences disease progression. Recently, it has been
demonstrated that pre-apheresis and pre-infusion total
metabolic tumor volume (tMTV) could predict survival
and that higher pre-apheresis or pre-infusion tMTV val-
ues were associated with shorter progression-free sur-
vival (PES) and OS. Furthermore, at pre-infusion, tMTV
was associated with grade > 2 cytokine release syndrome
(CRS), and maximum standardized uptake value (SUV-
max) was associated with failure to achieve CR. A pre-
dictive model using pre-infusion tMTV combined with
lactate dehydrogenase (LDH) was established to predict
patient outcomes after CAR-T cell therapy [2].

Here we reviewed 90 Chinese LBCL patients (53
males, 37 females; median age 56.5 years) received
CAR-T cell therapy at our institution from January
1, 2018 to March 31, 2023 (baseline characteristics
showed in Table 1). Key radiomic metrics included
SUVmax, tMTYV, total lesion glycolysis (tTLG), maxi-
mum diameter of the largest lesion (Dmax), and dis-
tance separating the two farthest lesions, standardized
by body surface area (hereafter referred to as distance
of the farthest lesions), at screening or 1-month after
CAR-T cell infusion. By analyzing these radiomics met-
rics in conjunction with the M3 response and survival
of patients, patients at screening with Dmax<6cm
(N=60) had higher 3-month CR rates (85.0% vs. 33.3%,
P<0.001), PFS (HR 0.17; 95% CI 0.08-0.35, P<0.001),
and OS (HR 0.18; 95% CI 0.08-0.40, P<0.001). Simi-
larly, patients with tMTV <50cm?® and tTLG < 500g had
higher 3-month CR rates, PFS and OS (Fig. 1). Based
on the areas under curve (AUC) of the receiver oper-
ating characteristic (ROC) curves for each metric and
multivariate analysis, Dmax had the largest AUC and
the most significant P-value, therefore, it was the opti-
mal screening metric for predicting prognosis (Sup-
plementary Fig. 1A-C and Table 2). Next, we validated
previously reported predictor model [2] using our
cohort and found that Dmax combined with extranodal

Table 1 Baseline characteristics of RJ cohort and Lyon cohort

RJ cohort Lyon cohort
(n=90) (N=72)
Age >60 31 (34.4%) 33 (45.8%)
<60 59 (65.6%) 39 (54.2%)
Gender Male 53 (58.9%) 44 (61.1%)
Female 37 (41.1%) 28 (38.9%)
ECOG score 0-1 63 (70.0%) 53 (73.6%)
>2 27 (30.0%) 19 (26.4%)
Ann Arbor stage -1l 21 (23.3%) 18 (25.0%)
-V 69 (76.7%) 54 (75.0%)
LDH level Normal 19 (21.1%) 16 (22.2%)
Elevated 71 (78.9%) 56 (77.8%)
Extranodal sites 0-1 36 (40.0%) NA
>2 54 (60.0%) NA
IPI score 0-2 33 (36.7%) NA
3-5 57 (63.3%) NA
Disease type DLBCL 72 (80.0%) 45 (62.5%)
PBMCL 4 (4.4%) 5(6.9%)
PCNSL 1(1.1%) 0
Transformed 13 (14.4%) 22 (30.6%)
low-grade
lymphoma
Cell of origin GCB 35 (38.9%) 36/63 (57.1%)
Non-GCB 55 (61.1%) 27/63 (42.9%)
Prior lines of therapy  1-2 56 (62.2%) 17 (23.6%)
>3 34 (37.8%) 55 (76.4%)
Primary refractory No 26 (28.9%) 25 (34.7%)
Yes 64 (71.1%) 47 (65.3%)
Response to last line PR 19 (21.1%) NA
SD/PD 71 (78.9%) NA
Prior ASCT No 83(92.2%) 52 (72.2%)
Yes 7 (7.8%) 20 (27.8%)
Bulky disease > 6cm No 60 (66.7%) 37/59 (62.7%)
Yes 30 (33.3%) 22/59 (37.3%)
Double expressor No 52 (57.8%) 20/64 (31.2%)
Yes 38 (42.2%) 44/64 (68.8%)
Double/triple-hit No 79 (87.8%) 26/31 (83.9%)
Yes 11 (12.2%) 5/31 (16.1%)
TP53 mutation No 59 (65.6%) NA
Yes 31 (34.4%) NA
CAR-T products Axi-cel 61 (67.8%) 33 (45.8%)
Relma-cel 29 (32.2%) 0
Kymriah 0 39 (54.2%)
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Fig. 1 The value of screening-phase 18F-FDG PET/CT metrics in predictin

g response, prognosis, and death. A Examination time points

during CAR-T cell therapy process. B-D PFS and OS of patients stratified with whether extranodal involvement and screening-phase Dmax (B), tMTV

(C), and tTLG (D). E 3-, 6- and 12-month responses after CAR-T cell therapy
CT, 18F-fluorodeoxyglucose positron emission tomography/computed to
survival; OS, overall survival; Dmax, the maximum diameters of the largest

involvement was more efficient in distinguishing
patient outcome than the combination of tMTV or
tTLG with extranodal involvement or LDH (Fig. 1B-D
and Table 2).

Identifying patients who will experience early progres-
sion is critical to implementing preemptive treatment
strategies. Therefore, we developed a prediction model
for early progression using these radiomic data for partial
response (PR)/ stable disease (SD) patients 1 month after

stratified with screening-phase 18F-FDG PET/CT metrics. 18F-FDG PET/
mography; CAR-T, chimeric antigen receptor T; PFS, progression-free
lesion; tMTV, total metabolic tumor volume; tTLG, total lesion glycolysis

CAR-T cell therapy. Recently, growing evidence has dem-
onstrated that high SUVmax in M1 is strongly associated
with poor prognosis [3—5]. Of note, the tTLG index is
derived in conjunction with lesion volume and spatial dis-
tribution to measure the metabolic activity of the lesion
and treatment response. We found that the prediction
model combining the SUVmax and the tTLG clearance
rate (AtTLG / tTLGP*=[tTLG at screening stage]-[tTLG
at M1]) / tTLG at screening stage) of M1 was able to
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Table 2 Univariate and multivariate logistic regression of the predictive factors for progression-free survival
Characteristics Univariate analysis Multivariate analysis

OR (95%Cl) P value OR (95%Cl) Pvalue
Age>60 1.053 (0.436-2.546) 0.908 0.535 (0.115-2.496) 0426
Male 1.041 (0.443-2.445) 0927 0.485 (0.116-2.031) 0.322
ECOG=2 1.509 (0.607-3.749) 0.376 0.918 (0.197-4.283) 0913
Ann Arbor stage >3 1.538 (0.552-4.286) 0410 0.931(0.185-4.681) 0.931
LDH elevated 0.949 (0.340-2.650) 0.921 0.351 (0.076-1.627) 0.181
Extranodal involvement 1.679 (0.573-4.920) 0.345 4376 (0.805-23.792) 0.087"
GCB subtype 0.511(0.210-1.243) 0.511 0.376 (0.094-1.506) 0.167
Prior lines of therapy > 3 1.220 (0.514-2.894) 0.652 1.543 (0.370-6.438) 0.551
Primary refractory 1.168 (0.459-2.968) 0.745 1.104 (0.265-4.596) 0.892
Response to last line: SD/PD 2.297 (0.747-7.063) 0.147 2473 (0.531-11.527) 0.249
Prior ASCT 1.081(0.227-5.141) 0.922 0.726 (0.070-7.558) 0.789
Double expressor 1.074 (0459-2.510) 0.870 1.545 (0.410-5.830) 0.521
Product: Axi-cel 0.648 (0.265-1.585) 0.342 0.556 (0.130-2.384) 0.429
Dmax = 6cm 20.000 (6.334-63.163) 0.000™ 25.178 (4958-127.861) 0.000™
tMTV = 50cm? 6.308 (2.483-16.025) 0.000™ 2.085 (0.247-17.630) 0.500
tTLG >500g 4.020 (1.615-10.007) 0.003™ 1.265 (0.145-11.0.28) 0.832

Abbreviations: ECOG Eastern Cooperative Oncology Group, LDH lactate dehydrogenase, IPl international prognostic index, DLBCL diffuse large B-cell ymphoma,
PMBCL primary mediastinal B-cell lymphoma, PCNSL primary central nervous system lymphoma, GCB germinal center B cell, PR partial response, SD stable disease,
PD progressive disease, ASCT autologous stem-cell transplantation, CAR-T chimeric antigen receptor T, Axi-cel axicabtagene ciloleucel, Relma-cel relmacabtagene

autoleucel, PFS progression-free survival, OR odds ratio, CI confidential interval
"P<0.1
" P<0.05

accurately predict the patients without progression
after CAR-T cell therapy. M1 SUVmax<8 and AtTLG /
tTLGP™>0.9 (N=11, median PFS not reached) predicted
a constant state of remission. However, SUVmax>8
indicted progression within 6 months, regardless of tTLG
clearance rate (tTLG clearance rate>0.9, N=6, median
PFS 4.2 months, HR 95.0, 95%CI 13.6—665.6 months;
tTLG clearance rate<0.9, N=7, median PFS 3.7 months,
HR 65.2, 95%CI 11.3-376.0 months), while M1 SUV-
max < 8 and tTLG clearance rate <0.9 (N=5, median PFS
4.4 months, HR 69.6, 95%CI 8.8—551.2 months) indicated
progression in 12 months (Supplementary Fig. 2A, 2E).
Furthermore, this model was validated by Lyon cohort
(Supplementary Fig. 2B) [4], indicating that the model is
robust and reliable, as the genetic background and eth-
nicity of patients do not affect the predictive power of the
model.

As for the predictive value of adverse events during
CAR-T cell therapy, a correlation between baseline MTV
with CRS/neurotoxicity (NT) grades [6—8], and baseline
SUVmax with CRS [3] has been revealed. In our cohort,
for axicabtagene ciloleucel (axi-cel), distance of the far-
thest lesions was associated with NT (AUC=0.74) (Sup-
plementary Fig. 3). No NT occurred in patients with
distance of the farthest lesions<0.15m™}, while 34.8% of
patients with distance of the farthest lesion>0.15m™!

experienced N'T. However, for relmacabtagene autoleucel
(relma-cel), no strong correlations were observed. Imag-
ing metrics did not correlate significantly with CRS/NT
duration or onset, or with CAR-T cell expansion metrics
(Supplementary Fig. 4). Therefore, incidence of CRS and
NT could vary from different CAR-T cells, probably due
to differences in CAR-T cell co-stimulatory molecules
and could also be due to the small sample size.

Gene Set Enrichment Analysis (GSEA) of RNA-
sequencing data showed that immunosuppressive-related
biological processes were enriched in patients with
Dmax>6cm (Fig. 2). Tumor microenvironment (TME)
analysis revealed higher levels of M2 macrophages,
cancer-associated fibroblasts (CAF), myeloid-derived
suppressor cell (MDSC), and intermediate exhausted T
cells in these patients, suggesting an immunosuppres-
sive microenvironment and a possible reason for CAR-T
cell therapy failure in patients with high tumor burden.
Accompanied by the increasing immunosuppressive cells
within TME, the lipid metabolic, iron/copper ion trans-
port, macrophage, granulocyte, monocyte chemotaxis,
and autophagy pathways were significantly activated
(Dmax>6cm). Under high tumor burden, tumor cells
tend to recruit and activate more immunosuppressive
cells, through metabolism alterations and subsequent
induction of T-cell exhaustions [9, 10].
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Fig. 2 Biological process and tumor microenvironment characteristics in patients stratified with Dmax. A Enriched BP terms in patients

with Dmax>6 cm, as compared to patients with Dmax <6 cm in CAR-T screening phase. The size of points indicates the number of genes included
in each gene set. B Volcano plot image of characterized gene expression from enriched categories in patients with Dmax>6 cm, as compared

to patients with Dmax <6 cm in CAR-T screening phase. The background color in the box represents which categories the gene belongs to.

The black dashed line corresponds to p=0.05. C Normalized expression of M2 macrophage, CAF, MDSC, and intermediate Tex of patients

with Dmax>6 cm and Dmax <6 cm in the CAR-T screening phase. BP, biological process; TME, tumor microenvironment; CAF, cancer-associated

fibroblasts; MDSC, myeloid-derived suppressor cell; Tex, exhausted T cell

In summary, imaging metrics of 18F-FDG PET/CT,
especially Dmax at the screening stage had the predictive
value of clinical efficacy, progression, and death of CAR-T
cell therapy, while the distance of the farthest lesions was
associated with the occurrence of NT. Furthermore, we
developed a prediction model combining M1 SUVmax
and tTLG clearance rate to predict early progression
for patients evaluated as PR/SD at M1 after CAR-T cell
therapy. Immunosuppressive TME may serve as a possi-
ble mechanism for those patients who respond poorly to
CAR-T cell therapy with high tumor burden.

Abbreviations
CAR-T

LBCL

18F-FDG PET/CT

tMTV
tTLG
SUVmax
ORR

CR

oS

PFS

CRS
LDH

Chimeric antigen receptor T

Large B-cell lymphoma
18F-fluorodeoxyglucose positron emission tomography/
computed tomography

Total metabolic tumor volume

Total lesion glycolysis

Maximum standardized uptake value
Objective remission rate

Complete response

Overall survival

Progression-free survival

Cytokine release syndrome

Lactate dehydrogenase
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PR Partial response

SD Stable disease

NT Neurotoxicity

Axi-cel Axicabtagene ciloleucel

AUC Area under curve

Relma-cel Relmacabtagene autoleucel
GSEA Gene Set Enrichment Analysis
TME Tumor microenvironment

CAF Cancer-associated fibroblasts
MDSC Myeloid-derived suppressor cell
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Supplementary Material 1.

Supplementary Material 2: Figure S1. ROC curves of screening-phase
18F-FDG PET/CT metrics with the 3-month response, PFS, and OS. (A-C)
ROC curves of screening-phase 18F-FDG PET/CT metrics (Dmax, tMTV,
tTLG, SUVmax, and sDmax) with PFS (A); OS (B), and 3-month response (C).
(D) ROC curves of M1 18F-FDG PET/CT metrics after CAR-T cell therapy
(M1 tMTV, M1 tTLG, and M1 SUVmax), (E-F) Avalue (AtMTV, AtTLG, and
ASUVmax) (E) and Avalue / valueP™® (AMTV/tMTVP'S, AtTLG/tTLGP™ and
ASUVmMax/SUVmax®P™®) (F) with PFS. ROC, receiver operating characteris-
tic; SUVmax, maximum standardized uptake value; sDmax, the distance
separating the two farthest lesions, standardized according to the body
surface area.

Supplementary Material 3: Figure S2. The value of 18F-FDG PET/CT metrics
in predicting early progression in PR/SD patients on M1 after CAR-T cell
therapy. (A-B) PFS of patients evaluated as PR/SD on M1 after CAR-T cell
therapy stratified with M1 SUVmax and AtTLG/tTLG™ from RJ cohort (A)
and Lyon cohort (B). (C-D) OS of patients evaluated as PR/SD on M1 after
CAR-T cell therapy stratified with M1 SUVmax and AtTLG/ATLGP™ from RJ
cohort (C) and Lyon cohort (D). (E) A prediction model combining M1
SUVmax and tTLG clearance rate to predict early progression for patients
evaluated as PR/SD at M1 after CAR-T cell therapy. PR, partial response; SD,
stable disease.

Supplementary Material 4: Figure S3. Correlation of screening-phase 18F-
FDG PET/CT metrics with CAR-T toxicity. (A-B) ROC curves of screening-
phase 18F-FDG PET/CT metrics (Dmax, tMTV, tTLG, SUVmax, and sDmax)
withCRS grade <2 or CRS grade > 2 (A) and no NT grade or any NT grade
(B) in patients received axi-cel treatment. ROC curves of screening-phase
18F-FDG PET/CT metrics (Dmax, tMTV, tTLG, SUVmax and sDmax) with
CRS grade <2 or CRS grade > 2 (C) and no NT grade or any NT grade (D)
in patients received relma-cel treatment. (E) Occurrence of NT in patients
stratified with screening-phase sDmax. (F) Correlation of screening-phase
18F-FDG PET/CT metrics with duration of CRS and NT. (G) Correlation of
screening-phase 18F-FDG PET/CT metrics with onset day of CRS and NT.
CRS, cytokine release syndrome; NT, neurotoxicity; Axi-cel, axicabtagene
ciloleucel; relma-cel, relmacabtagene autoleucel.

Supplementary Material 5: Figure S4. Correlation of screening-phase 18F-
FDG PET/CT metrics with CAR-T cell expansion. Correlation of screening-
phase 18F-FDG PET/CT metrics with the duration of CAR-T Cmax (A), Tmax
(B), and AUC 154 (C). Cmax, the peak CAR-T cell expansion value; Tmax, the
days to peak expansion; AUC, ,g4 expansion area under curve of day 0-28
after CAR-T cell therapy.
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